This action adopts regulations implementing statutorily mandated annual inspections of intrastate hazardous liquid pipelines and operators thereof to ensure compliance with applicable safety laws.

OAL approves the sections listed as APPROVED above pursuant to section 11349.3 of the Government Code. This regulatory action becomes effective on 2/9/2017.

The section(s) listed as WITHDRAWN above were withdrawn from OAL review pursuant to Government Code section 11349.3(c).

Please contact me at (916) 323-4217 or mark.storm@oal.ca.gov, or the OAL Reference Attorney at (916) 323-6815, if you have any questions about the resubmittal process. You may request the return of your rulemaking record by contacting the OAL Front Desk at (916) 323-6225.

Date: February 9, 2017

Mark Storm
Senior Attorney

For: Debra M. Cornez
Director
Article 1. Scope

§ 2000.

Title 49 of the Code of Federal Regulations, Part 195 is hereby adopted by reference as it relates to hazardous liquid pipelines.

Article 2. Annual Inspection of Intrastate Hazardous Liquid Pipelines and Operators of Intrastate Hazardous Liquid Pipelines

In order to implement Section 51015.1 (a) of the Government Code, the Office of the State Fire Marshal shall conduct an annual inspection of every intrastate hazardous liquid pipeline and every operator of an intrastate hazardous liquid pipeline. The inspection shall include the following:

(a) Evaluation of the risks to each intrastate hazardous liquid pipeline based upon the operator history, integrity testing results, preventative and mitigative measures, construction activities, leak history, and compliance history.

(b) An annual inspection of each operator of an intrastate hazardous liquid pipeline in accordance with California State Fire Marshal Annual Inspection Procedures (dated July 1, 2016) which is hereby incorporated by reference.

(c) An annual inspection of each intrastate hazardous liquid pipeline in accordance with California State Fire Marshal Annual Inspection Procedures (dated July 1, 2016) which is hereby incorporated by reference.

§ 2021. Form PSD-101 Requirements

(a) The following forms, in the format developed by the Office of the State Fire Marshal, which are hereby incorporated by reference, shall be used for hazardous liquid pipeline annual inspections:

2. Instructions for Form PSD-101 (dated July 1, 2016).

(b) Each operator of an intrastate hazardous liquid pipeline shall complete and submit to the Office of the State Fire Marshal Form PSD-101 for each intrastate hazardous liquid pipeline no later than July 1st annually.

4. Exception:
When written approval is granted by the Office of the State Fire Marshal, a 30-day extension may be granted. This written request must be submitted to the Pipeline Safety Division Lakewood Office no later than June 4th.

(c) Each operator of an intrastate hazardous liquid pipeline shall have available for review by the Office of the State Fire Marshal documentation to substantiate the information provided in the Form PSD-101.

§ 2030. Violations

Failure to comply with any of the above provisions of this chapter shall be subject to enforcement action under Section 51018.6 of the Government Code.

DOCUMENTS INCORPORATED BY REFERENCE

- PSD 101 Annual Report (July 1, 2016)
- PSD 101 Instructions (July 1, 2016)
- Annual Inspection Procedures (July 1, 2016)
Notice: This report is required by Government Code §51015.1(a) and Title 19, California Code of Regulations, Chapter 14, Article 2. Failure to report may result in a civil penalty of not more than two hundred thousand dollars ($200,000) for each day that violation persists, except that the maximum civil penalty shall not exceed two million dollars ($2,000,000) for any related series of violations.

Important: Please read the instructions for completing this form before you begin. You can download a copy of the instructions from the CAL FIRE - Office of the State Fire Marshal Pipeline Safety website: http://osfm.fire.ca.gov/

Data submitted on this form represents operation and inspection information from January 1, 2016 to December 31, 2016. Proposed projects and new construction referenced in this form include those approved by the operator at the time of submission.

COMPANY NAME:

Company (Billing) ID#
Address
City
State
Zip

Form Completed by:
Title:
Phone
Email:

Date Submitted:
<table>
<thead>
<tr>
<th>COMPANY OPERATIONS</th>
<th>YES or NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO.01 Have there been any asset acquisitions or divestitures in the last calendar year?</td>
<td></td>
</tr>
<tr>
<td>CO.02 Are there any new construction projects scheduled for the next calendar year?</td>
<td></td>
</tr>
<tr>
<td>CO.03 Are there any spill drills planned/scheduled for the next calendar year?</td>
<td></td>
</tr>
</tbody>
</table>
PIPELINE OPERATIONS

<table>
<thead>
<tr>
<th>PIPELINE SPECIFICATIONS</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS.01 Total length of pipeline (miles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.02 Could the pipeline affect High Consequence Areas (HCA)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.03 If Yes, what is the total miles that could affect HCA's?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.04 What is the maximum temperature of the product being transported?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.05 What is the highest Maximum Operating Pressure (MOP) on the pipeline?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.06 What is the limiting factor for the MOP?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.07 What commodities are transported or contained in this pipeline?</td>
<td>Commodity #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.08</td>
<td>Commodity #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.09</td>
<td>Commodity #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.10</td>
<td>Commodity #4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS.11 Are there any Breakout Tanks associated with this pipeline?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MILES OF PIPE BY TYPE</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.01 Buried pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.02 Aboveground pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.03 Coated pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.04 Bare pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.05 Insulated pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.06 Pre-1970 Electric Resistances Welded (ERW) Pipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.07 Operating at greater than 20% Specified Minimum Yield Strength (SMYS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.08 Operating at less than or equal to 20% SMYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP.09 Operating at an unknown stress level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTEGRITY TESTING

<table>
<thead>
<tr>
<th>ASSESSMENT INFORMATION</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM.01 What is the continual Integrity Assessment method for the prior calendar year?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM.02 When is the next Integrity Inspection due?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IN-LINE INSPECTIONS</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
<th>Line Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL.01 When was the most recent In-Line Inspection (ILI) completed?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL.02 Has the final ILI evaluation report been received from the most recent ILI?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If No, answer the remainder of the questions in this section based on this previous ILI tool run and its associated evaluation report.

When was the previous ILI completed?

<table>
<thead>
<tr>
<th>Type(s) of ILI tool(s) used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the fields below for multiple tool types</td>
</tr>
<tr>
<td>Tool Type #1</td>
</tr>
<tr>
<td>Tool Type #2</td>
</tr>
<tr>
<td>Tool Type #3</td>
</tr>
<tr>
<td>Tool Type #4</td>
</tr>
</tbody>
</table>

 Were there any external corrosion anomalies identified from the last validated ILI evaluation based on the operator's repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect an HCA?

 Were there any internal corrosion anomalies identified from the last validated ILI evaluation based on the operator's repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect an HCA?

 Were there any dent/gouge anomalies identified from the last validated ILI evaluation based on the operator's repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect an HCA?

 Were there any cracks or crack-like anomalies identified from the last validated ILI evaluation based on the operator's repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect an HCA?

 Were there any manufacturer defect anomalies identified from the last validated ILI evaluation based on the operator's repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect an HCA?

 Are the same repair criteria utilized in HCA and non-HCA's?

 Total number of anomalies excavated in the previous calendar year because they met the operator's criteria for excavation.

 Total number of anomalies repaired in the previous calendar year that were identified by ILI based on the operator's repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect an HCA.

 Was a pressure reduction taken or the pipeline shut down in response to remediating a condition identified from an integrity assessment.

 Total number of conditions repaired WITHIN A SEGMENT THAT COULD AFFECT AN HCA meeting the definition of:

 1. "Immediate repair conditions" (195.452(h)(4)(i))
 2. Other repair conditions required by 195.452

 Is the operator waiting for permits to remediate anomalies?

 If yes:

 1. How many days has the permitting process been in progress?
 2. Has the pressure reduction exceeded 365 days?

 If Yes:

 1. Has the operator notified PHMSA (Pipeline and Hazardous Materials Safety Administration) and OSFM (Office of the State Fire Marshal)?
HYDROSTATIC PRESSURE TESTING

| Date of last pressure test (include California State Fire Marshal (CSFM) Test ID) |
| Was a spike test completed? |
| Were there any pressure test failures (ruptures and leaks) during the last pressure test? |

CONTROL ROOM MANAGEMENT/SCADA

| Is a Supervisory Control and Data Acquisition (SCADA) system used to monitor or control all or part of this pipeline? |
| Is there a control room, as defined in 195.2, associated with this pipeline? |
| Where is the primary control center located? |

LEAK DETECTION SYSTEM

| Is a Computational Pipeline Monitoring (CPM) leak detection system used on this pipeline? |
| If a CPM leak detection system is not used, describe how leaks are detected on the pipeline? |

CORROSION CONTROL

| What type of cathodic protection is used on this pipeline? |
| When was the last close-interval survey performed on this line? |
| Has the corrosive effect of the hazardous liquid on the pipeline been investigated? |
| Are corrosion inhibitors used to mitigate internal corrosion? |

NATURAL FORCE RISKS

| Does this pipeline cross known active faults? |

PROJECTS

| PROJECTS SCHEDULED (Next Calendar Year) |
| Relocation/Replacement/Reconditioned Projects |
| Cathodic Protection (CP) Projects |
GENERAL INSTRUCTIONS

All section references are to Title 49 of the Code of Federal Regulations (49 CFR) and the California Elder Pipeline Safety Act. The Office of the State Fire Marshal (OSFM) Form PSD-101 is required per Government Code §51015.1(a) and Title 19, California Code of Regulations, Chapter 14, Article 2.

By May 15th of each year, the OSFM will provide each California intrastate pipeline operator a Form PSD-101. The Form PSD-101 will be divided by OSFM Inspection Unit and will include each OSFM jurisdictional pipeline that was included in the OSFM Annual Questionnaire for the previous year. Please use a separate page to identify additional pipelines.

Each pipeline operator is required to annually complete and submit a Form PSD-101 to OSFM by July 1st that represents the operator’s pipeline assets as of December 31st of the previous calendar year. The completed Form PSD-101 will identify scheduled projects for the next calendar year and will contain inspection data and validated inspection results from the previous calendar year for each jurisdictional pipeline. Operators must maintain documentation to substantiate the information provided in their Form PSD-101.

If an operator is unable to submit the Form PSD-101 by July 1st, a written request may be submitted to the OSFM asking for a 30 day extension. This written request must be submitted to the Pipeline Safety Division Lakewood Office no later than June 1st.

SUBMISSION METHOD

The OSFM will send an electronic version of each Form PSD-101 to the operator staff that has been designated to complete the annual OSFM Pipeline Questionnaire. The Form PSD-101 will be populated with the company information (Name, ID, Inspection Units, and CSFM Line ID) that is currently on file with the OSFM. If any information included in the form is incorrect, please enter the correct information using RED text to identify the change.

Each completed Form PSD-101 must be emailed to the Pipeline Safety Division Staff Service Analyst at FirstName.LastName@fire.ca.gov. If the operator is unable to email the Form PSD-101, the operator will need to print a copy and mail the form to the Pipeline Safety Division Lakewood Office at:

 CAL FIRE – Office of the State Fire Marshal
 Pipeline Safety Division
 3950 Paramount Blvd., Suite 210
 Lakewood, CA 90712

NOTE: Form PSD-101 must be post marked no later than July 1st.
COMPANY INQUIRY – The following questions refer to the operator’s overall intrastate hazardous liquid pipeline systems.

COMPANY OPERATIONS

<table>
<thead>
<tr>
<th>Annual Report Code</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO.01</td>
<td>Have there been any asset acquisitions or divestitures in the last calendar year?</td>
</tr>
<tr>
<td></td>
<td>Select “Yes” from the drop-down menu, if the operator had an acquisition or divestiture of an OSFM jurisdictional hazardous liquid pipeline or facility during the previous calendar year.</td>
</tr>
<tr>
<td>CO.02</td>
<td>Are there any new construction projects scheduled for the next calendar year?</td>
</tr>
<tr>
<td></td>
<td>When answering question CO.02, operators must consider all new construction projects that are scheduled for the next calendar year. New construction projects include the design, construction, or testing of new pipelines, facilities, or breakout tanks that will be under the jurisdiction of the OSFM. Do not include replacement or relocation projects on existing pipelines. Replacement or relocation projects will be captured in the Annual Report Code PR.01 for each pipeline.</td>
</tr>
<tr>
<td></td>
<td>Select “Yes” from the drop-down menu, if the operator has a new construction project scheduled for the next calendar year.</td>
</tr>
<tr>
<td>CO.03</td>
<td>Are there any spill drills planned or scheduled for the next calendar year?</td>
</tr>
<tr>
<td></td>
<td>Select “Yes” from the drop-down menu, if the operator has planned or scheduled for the next calendar year a spill drill for any pipeline in this inspection unit.</td>
</tr>
</tbody>
</table>
PIPELINE INQUIRY – The following questions refer to each of the operator’s intrastate hazardous liquid pipelines.

PIPELINE OPERATIONS:

PIPELINE SPECIFICATIONS

<table>
<thead>
<tr>
<th>PS.01</th>
<th>Total length of pipeline (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the total length of each pipeline measured in miles to 2 decimal places.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS.02</th>
<th>Could the pipeline affect High Consequence Areas (HCA’s)?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select “Yes” from the drop-down menu, if any part of the pipeline could affect a High Consequence Area (HCA) as defined in Title 49 CFR, Part 195.450.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS.03</th>
<th>If yes, what are the total miles that could affect HCA’s?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the total miles of each pipeline that could affect a HCA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS.04</th>
<th>What is the maximum temperature of the product being transported?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the maximum temperature in Fahrenheit of the product transported in each pipeline.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS.05</th>
<th>What is the highest Maximum Operating Pressure (MOP) on the pipeline?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the highest MOP for the entire pipeline.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS.06</th>
<th>What is the limiting factor for the MOP?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enter the limiting factor that was used to determine the MOP of each pipeline. Use the drop-down menu to select from the following: Internal Design Pressure of the Pipe; Design Pressure of any other Component; 80% of the Test Pressure; 80% of the Factory Test Pressure of any component as defined in Title 49 CFR, Part 195.406.</td>
</tr>
</tbody>
</table>

What commodities are transported or contained in this pipeline?

Enter the commodity transported in each pipeline. Use the drop-down menu to select from the following: Crude Oil; Refined Products (non-HVL); Jet Fuel (only); Natural Gasoline; Natural Gas Liquids; Carbon Dioxide; Anhydrous Ammonia; Highly Volatile Liquid; Fuel Grade Ethanol; Biodiesel Blend; Water; Nitrogen; Drilling Mud; Natural Gas. If multiple commodities are transported or are contained in
the pipeline, use PS.07 through PS.10 to select all commodities that apply as defined in Title 49 CFR, Part 195.2.

PS.07 Commodity #1
PS.08 Commodity #2
PS.09 Commodity #3
PS.10 Commodity #4

PS.11 Are there any Breakout Tanks associated with this pipeline?

Select “Yes” from the drop-down menu, if there are any Breakout Tanks that meet the definition in Title 49 CFR, Part 195.2 and are associated to this pipeline.

MILES OF PIPE BY TYPE – All miles of pipe shall be reported to 2 decimal places. Do not use feet to report miles of pipe.

MP.01 Buried Pipe
Enter the total miles of buried pipe for each pipeline.

MP.02 Aboveground Pipe
Enter the total miles of aboveground pipe for each pipeline.

MP.03 Coated Pipe
Enter the total miles of coated pipe for each pipeline.

MP.04 Bare Pipe
Enter the total miles of bare pipe for each pipeline.

MP.05 Insulated Pipe
Enter the total miles of insulated pipe for each pipeline.

MP.06 Pre-1970 Electric Resistance Welded (ERW) Pipe
Enter the total miles of pre-1970 ERW pipe for each pipeline.

MP.07 Operating at greater than 20% Specified Minimum Yield Strength (SMYS)
Enter the total miles of pipe operating at greater than 20% SMYS for each pipeline.

MP.08 Operating at less than or equal to 20% SMYS
Enter the total miles of pipe operating at less than or equal to 20% SMYS for each pipeline.
MP.09 Operating at an unknown stress level
Enter the total miles of pipe operating at an unknown stress level for each pipeline.

INTEGRITY TESTING:

ASSESSMENT INFORMATION

IM.01 What is the continual Integrity Assessment method for the prior calendar year?
Enter type of integrity assessment that is performed on each pipeline according to the
operators Integrity Management Plan. If the pipeline is not covered under Title 49 CFR, Part
195.452, use the required testing interval from the California Government Code, Section
51013.5.

Use the drop-down menu to select from the following: In-Line Inspection; Hydrostatic
Pressure Test; Other.

IM.02 When is the next Integrity Inspection due?
Enter the date when the next integrity assessment is due according to the operators Integrity
Management Plan. If the pipeline is not covered under Title 49, Part CFR 195.452, use the
required testing interval from the California Government Code, Section 51013.5.

IN-LINE INSPECTIONS — If the continual Integrity Assessment method selected for question IM.01 was
Hydrostatic Pressure Test or Other, skip questions IL.01 through IL.23.

IL.01 When was the most recent In-Line Inspection (ILI) completed?
Enter the date of the most recent ILI. If multiple ILI tool runs were conducted to complete the
inspection of the entire pipeline, use the following format:
04/01/2009 (10"), 05/01/2010 (12"), 02/01/2009 (16")

IL.02 Has the final ILI evaluation report been received from the most recent ILI?
If No, answer the remainder of the questions in this section based on this previous ILI and its
associated final ILI evaluation report.

IL.03 When was the previous ILI completed?
Enter the date the previous ILI was completed. If multiple ILI tool runs were conducted to complete the inspection of the entire pipeline, use the following format:

04/01/2009 (10”), 05/01/2010 (12”), 02/01/2009 (16”)

Type(s) of ILI tool(s) used:

If multiple ILI tools were used in the above referenced ILI, use the IL.04-IL.07 to select all that apply.

<table>
<thead>
<tr>
<th>IL.04</th>
<th>Tool Type #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL.05</td>
<td>Tool Type #2</td>
</tr>
<tr>
<td>IL.06</td>
<td>Tool Type #3</td>
</tr>
<tr>
<td>IL.07</td>
<td>Tool Type #4</td>
</tr>
</tbody>
</table>

Enter type of ILI tool used in the last inspection. Use the drop-down menu to select from the following: Corrosion or Metal Loss Tool; Dent or Deformation Tools; Crack or Long Seam Defect Detection Tool; Other Internal Inspection Tool. If multiple ILI tool runs were conducted using different tool types to complete the inspection of the entire pipeline, please use a separate page to identify the different ILI tool types for each ILI tool run. [Title 49 CFR, Part 195.452(j)(5)]

IL.08 Were there any external corrosion anomalies identified from the last validated ILI evaluation based on the operator’s repair criteria, both within a segment that could affect a HCA and outside of a segment that could affect a High Consequence Area (HCA)?

Select “Yes” from the drop-down menu, if there were any external corrosion anomalies identified based on the operator’s repair criteria even if those criteria are different from the repair criteria in Integrity Management (IM) regulations pursuant to Title 49 CFR, Part 195.452 applicable to anomalies in pipeline segments that could affect HCA per Title 49 CFR, Part 195.452 (i.e., require repair of damage more or less significant). The operator’s criteria for anomalies in segments that could affect a HCA must be at least as conservative as those required by the IM regulations.

IL.09 Were there any internal corrosion anomalies identified from the last validated ILI evaluation based on the operator’s repair criteria, both within a segment that could affect a HCA and outside of a segment that could affect a HCA?

Select “Yes” from the drop-down menu, if there were any internal corrosion anomalies identified based on the operator’s repair criteria even if those criteria are different from the repair criteria in IM regulations applicable to anomalies in pipeline segments that could affect HCA per Title 49 CFR, Part 195.452 (i.e., require repair of damage more or less significant). The operator’s criteria for anomalies in segments that could affect a HCA must be at least as conservative as those required by the IM regulations.
IL.10 Were there any dent or gouge anomalies identified from the last validated ILI evaluation based on the operator’s repair criteria, both within a segment that could affect a HCA and outside of a segment that could affect a HCA?

Select “Yes” from the drop-down menu, if there were any dents or gouges identified based on the operator’s repair criteria even if those criteria are different from than the repair criteria in IM regulations applicable to anomalies in pipeline segments that could affect HCA per Title 49 CFR, Part 195.452 (i.e., require repair of damage more or less significant). The operator’s criteria for anomalies in segments that could affect a HCA must be at least as conservative as those required by the IM regulations.

IL.11 Were there any cracks or crack-like anomalies identified from the last validated ILI evaluation based on the operator’s repair criteria, both within a segment that could affect a HCA and outside of a segment that could affect a HCA?

Select “Yes” from the drop-down menu, if there were any cracks or crack-like anomalies identified based on the operator’s repair criteria even if those criteria are different from than the repair criteria in IM regulations applicable to anomalies in pipeline segments that could affect HCA per 49 CFR 195.452 (i.e., require repair of damage more or less significant). The operator’s criteria for anomalies in segments that could affect a HCA must be at least as conservative as those required by the IM regulations.

IL.12 Were there any manufacturer defect anomalies identified from the last validated ILI evaluation based on the operator’s repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect a HCA?

Select “Yes” from the drop-down menu, if there were any manufacturer defect anomalies identified based on the operator’s repair criteria even if those criteria are different from than the repair criteria in IM regulations applicable to anomalies in pipeline segments that could affect HCA per 49 CFR 195.452 (i.e., require repair of damage more or less significant). The operator’s criteria for anomalies in segments that could affect a HCA must be at least as conservative as those required by the IM regulations.

IL.13 Are the same repair criteria utilized in HCA’s and non-HCA’s?

Select “Yes” from the drop-down menu, if the operator uses the same repair or response criteria for anomalies identified in HCA’s and non-HCA’s. Select “No” from the drop-down menu, if the operator uses different repair/response criteria for anomalies identified in HCA’s and non-HCA’s.

For the following questions, include all actions taken during the previous calendar year that resulted from information obtained during an ILI inspection. This should also include actions taken as a result of ILI inspections conducted during prior years and for which all required actions were not completed during the year of the inspection.
IL.14 The total number of anomalies excavated in the previous calendar year because they met the operator's criteria for excavation.

Enter the total number of anomalies excavated in the previous calendar year based on the operator’s criteria for excavation. Enter a value for each pipeline, using zero (0) as appropriate.

IL.15 Total number of anomalies repaired in the previous calendar year that were identified by ILI based on the operator’s repair criteria, both within a segment that could affect an HCA and outside of a segment that could affect a HCA.

Enter the total number of anomalies repaired based on the operator’s repair criteria even if those criteria are different from than the repair criteria in IM regulations applicable to anomalies in pipeline segments that could affect a HCA per 49 CFR 195.452 (i.e., require repair of damage more or less significant). The operator’s criteria for anomalies in segments that could affect a HCA must be at least as conservative as those required by the IM regulations.

Include in the total only those anomalies actually repaired, not those for which other mitigated actions, such as recoating, were taken or those anomalies eliminated by pipe replacement.

Enter a value for each pipeline, using zero (0) as appropriate.

IL.16 Was a pressure reduction taken or the pipeline shut down in response to remediating a condition identified from an integrity assessment?

Select “Yes” from the drop-down menu, if a pressure reduction was taken or the pipeline was shut down in response to remediating a condition identified from an integrity assessment. Select “No” from the drop-down menu, if there was no need to reduce the pressure or shutdown the pipeline in response to remediating a condition identified from an integrity assessment.

Total number of conditions repaired WITHIN A SEGMENT THAT COULD AFFECT AN HCA meeting the definition of:

IL.17 1. "Immediate repair conditions" [49 CFR 195.452(h)(4)(i)]

Report only the anomalies in pipeline segments that could affect an HCA that were repaired because they met the “immediate repair conditions” criteria in the IM regulations 49 CFR 195.452(h)(4)(i). Enter a value for each pipeline, using zero (0) as appropriate.

IL.18 2. Other repair conditions required by 49 CFR 195.452

Report only the anomalies in pipeline segments that could affect an HCA that were repaired because they met the a repair criteria in the IM regulations 49 CFR 195.452(h)(4) other than...
an "immediate repair conditions". Enter a value for each pipeline, using zero (0) as appropriate.

IL.19 Is the operator waiting for permits to remediate anomalies?

Select “Yes” from the drop-down menu, if the operator is waiting for permits to remediate an anomaly identified on the pipeline during the last ILI evaluation.

If Yes:

IL.20 1. How many days has the permitting process been in progress?

Enter the number of days since the operator has submitted the permit to remediate the anomaly. If there are multiple anomalies on this pipeline waiting on permits to be remediated, than enter the information for the anomaly that has been in the permit process the longest.

IL.21 2. Has the pressure reduction exceeded 365 days?

Select “Yes” from the drop-down menu, if a pressure reduction taken on this pipeline in response to remediating a condition identified from an integrity assessment exceeded 365 days.

If Yes:

IL.22 1. Has the operator notified PHMSA or OSFM?

Select “Yes” from the drop-down menu, if the operator has notified PHMSA and OSFM of a pressure reduction taken on this pipeline in response to remediating a condition identified from an integrity assessment that exceeded 365 days.
IL.23 COMMENTS:

Use this text box to further explain or clarify answers given in the IN-LINE INSPECTIONS Section.

HYDROSTATIC PRESSURE TESTING

HP.01 Date of last pressure test (include CSFM Test ID)

Enter the date of the last pressure test completed on the entire pipeline and enter the CSFM Test ID assigned to this pressure test. If multiple hydrostatic pressure tests were conducted to complete the inspection of the entire pipeline, use the following format:

04/01/2009 (CSFM Test ID 00-000), 05/01/2010 (CSFM Test ID 00-000), 02/01/2009 (CSFM Test ID 00-000)

HP.02 Was a spike test completed?

Select “Yes” from the drop-down menu, if a spike test was completed during the last pressure test completed on the entire pipeline.

HP.03 Were there any pressure test failures (ruptures and leaks) during the last pressure test?

Select “Yes” from the drop-down menu, if a pressure test failure occurred on the last pressure test completed on the entire pipeline. Small leaks on pipe valves or flange gaskets are not considered a pressure test failure.

PREVENTATIVE and MITIGATIVE MEASURES:

CONTROL ROOM MANAGEMENT/SCADA

CR.01 Is a Supervisory Control and Data Acquisition (SCADA) system used to monitor or control all or part of this pipeline?

Select “Yes” from the drop-down menu, if a Supervisory Control and Data Acquisition (SCADA) system, as defined by 49 CFR 195.2, is used to monitor or control all or part of the pipeline.

CR.02 Is there a control room, as defined in 49 CFR 195.2, associated with this pipeline?

If Yes,

CR.03 Where is the primary control center located?
Enter the City and State of the primary control center.

LEAK DETECTION SYSTEM

LD.01 Is a Computational Pipeline Monitoring (CPM) leak detection system used on this pipeline?

Select “Yes” from the drop-down menu, if a Computational Pipeline Monitoring (CPM) leak detection system, as defined by 49 CFR 195.2, is used on this system.

LD.02 If a CPM leak detection system is not used, describe how leaks are detected on the pipeline?

Use this text box to explain how leaks and ruptures are detected on this pipeline.

CORROSION CONTROL

CC.01 What type of cathodic protection is used on this pipeline?

Use the drop-down menu to select from the following: Galvanic Anode, Impressed Current; Both Galvanic Anode and Impressed Current; None.

CC.02 When was the last close-interval survey performed on this line?

Enter the date of the last close-interval survey (CIS) performed on any portion of the pipeline. Close interval surveys are a detailed potential survey conducted on a pipeline to assess the effectiveness of the cathodic protection system. Enter “Never”, if a CIS has not been conducted on this pipeline.

CC.03 Has the corrosive effect of the hazardous liquid on the pipeline been investigated?

Select “Yes” from the drop-down menu, if the operator has investigated the corrosive effect of the hazardous liquid transported in the pipeline.

CC.04 Are corrosion inhibitors used to mitigate internal corrosion?

Select “Yes” from the drop-down menu, if corrosion inhibitors are used to mitigate internal corrosion of the pipeline.

NATURAL FORCE RISKS

NF.01 Does this pipeline cross known active faults?

Select “Yes” from the drop-down menu, if the pipeline crosses a known active fault. The OSFM recommends the operator use the USGS Quaternary Fault and Fold Database to verify if the pipeline crosses an active fault. This is an online database found at http://Qfaults.cr.usgs.gov/ that contains information on faults and associated folds that are believed to be sources of earthquakes greater than magnitude 6 (M>6). The database is limited to structures with
documented activity during the Quaternary (past 1.6 million years) because this period of geologic time is most relevant for studies of active earthquake faults

PROJECTS

PROJECTS SCHEDULED (Next Calendar Year)

PR.01 Relocation/Replacement/Reconditioned Projects

Select “Yes” from the drop-down menu, if any of the following projects are scheduled for the next calendar year:

1) A relocation or replacement of any portion of the pipeline that is greater than 1,000 feet in total length.
2) A project to recondition or recoat any portion of the pipeline that is greater than 1,000 feet in total length.

PR.02 Cathodic Protection (CP) Projects

Select “Yes” from the drop-down menu, if a cathodic protection project is scheduled for the next calendar year that is needed to comply with 49 CFR 195.571 and is anticipated to cost more than $50,000.
Objective:

Senate Bill (SB) 295 was chaptered into law last year which mandates the Office of State Fire Marshal (OSFM) to adopt regulations and conduct annual inspections to reduce the potential for jurisdictional hazardous liquid pipeline accidents in California and protect the people of California and the environment.

Authority/Jurisdiction:

Government Code §51015.1(a) and Title 19, California Code of Regulations, Chapter 14, Article 2.

Process:

The OSFM annual inspection will ensure compliance with federal and State regulations, enhance public safety, protect California's vital natural resources, and reduce the risk of future jurisdictional hazardous liquid pipeline accidents. The OSFM annual inspection is a two-phase risk-based inspection approach intended to reduce the number of jurisdictional hazardous liquid pipeline accidents and reduce the consequence of jurisdictional hazardous liquid pipeline releases. The process consists of 4 main components:

1. Gather Operator Information: Beginning in 2017, each pipeline operator will be required to annually complete and submit to the OSFM the Form PSD-101 by July 1st. The completed form will contain data and validated inspection results from the previous calendar year for each jurisdictional pipeline and scheduled projects for the next calendar year. Operators must maintain documentation to substantiate the information provided in their Form PSD-101. If an operator is unable to submit the Form PSD-101 by July 1st, they may submit a written request to the OSFM asking for a 30-day extension. This written request must be submitted to the Pipeline Safety Division Lakewood Office no later than June 1st.

2. Internal OSFM Review/Identify Inspection Modules: OSFM staff will review each submitted Form PSD-101 for completeness. OSFM will also review leak, violation, and inspection history from internal databases to identify risks, trends, and other pipeline safety issues on each pipeline.
The OSFM will assign inspection modules for each jurisdictional hazardous liquid pipeline based on pipeline operating history, integrity testing, preventative and mitigative measures, construction activities, and the OSFM internal review.

3. Annual Operator Inspection: The OSFM will schedule an annual operator inspection after the OSFM has assigned inspection modules to an operator’s jurisdictional hazardous liquid pipelines. This operator inspection will include reviewing records associated with the completed Form PSD-101 and discussing the inspection modules that have been assigned to each of the operator’s pipelines for the coming year. Prior to the inspection, operators will be informed as to which documents must be available during the annual operator inspection. This will allow the operator to compile the required documentation from regional offices and have essential personnel available during the inspection.

NOTE: Additional inspection modules may be assigned to a pipeline based on information obtained during the annual operator inspection.

4. Annual Pipeline Inspection: The OSFM staff will conduct an annual pipeline inspection on each pipeline listed on the operator’s Form PSD-101 using the annual inspection modules that were assigned to each pipeline.